
Journal of Statistical Physics, Vol. 93, Nos. 3/4, 1998

Shell models of turbulence have been studied intensively by Kadanoff(1–3)

and many others (for a review see ref. 4). It appears that a lot of properties
of highly turbulent flows are nicely captured by those models and numeri-
cal computations of shell models are much more tractable than direct
simulations of the Navier-Stokes equations. Of particular focus have been
studies of intermittency effects where laminar quiescent periods are inter-
rupted by strong intermittency bursts of high energy dissipation. Most shell
models follow completely deterministic dynamics but exhibits nevertheless
strong intermittent behavior and this is believed to be caused by the inter-
nal chaotic dynamics. For the "GOY" shell model,(5, 6) the strength of this
chaos is known to be related to the nature of the second invariant, i.e., the
"helicity" invariant.(1, 7) It is the purpose of this paper to explore the nature
of the chaotic behavior as the properties of the second invariant are
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We study the chaotic behavior of the GOY shell model by measuring the varia-
tion of the maximal Lyapunov exponent with the parameter £ which determines
the nature of the second invariant (the generalized "helicity" invariant). After a
Hopf bifurcation, we observe a critical point at ec ~ 0.38704 above which the
maximal Lyapunov exponent grows nearly linearly. For high values of e the
evolution becomes regular again, which can be explained by a simple analytic
argument. A model with few shells shows two transitions. To simplify the model
substantially we introduce a shell map which exhibits similar properties as the
GOY model.
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changed. We do this by estimating the variation of the maximal Lyapunov
exponent with an external parameter e and find a transition in this expo-
nent where it jumps up from zero to a small but finite value after which it
grows linearly. Previous work by Biferale et al.(7) and Kadanoff et al.(2)

have concentrated on the instability of the "Kolmogorov fixed point" as
the nature of the invariant is changed, measured by a parameter e to be
introduced below. The first group observed a Hopf bifurcation of the fixed
point at £ = 0.3843 turning into a torus at £ = 0.3953 and finally a strange
attractor at e = 0.398. This was refined by the other group who also studied
the detailed eigenvalue spectrum for the unstable modes.(2) These studies
however only addressed the instability of the stationary state and not the
transition to chaotic evolution, which is our purpose here.

Shell models are formed by various truncation techniques of the Navier-
Stokes equations.(4) The most well-studied model is the "GOY" model of
Gledzer-Ohkitani-Yamada.(1–10) This model yields corrections to the
Kolmogorov theory(8) in good agreement with experiments.(11, 12) For the
"GOY" shell model, wave-number space is divided into N separated shells
each characterized by a wave-number kn = r"k0 (r = 2), with n=l,...,N.
Each shell is assigned a complex amplitude un describing the typical
velocity gradient over a scale fn = \jkn. By assuming interactions among
nearest and next nearest neighbour shells and phase space volume conser-
vation one arrives at the following evolution equations(6)
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with boundary conditions bx=bN = cl=c2 = aN-1 =aN = 0.f is an external,
constant forcing, here on the forth mode.

The coefficients of the non-linear terms must follow the relation an +
bn +1 + cn + 2 = 0 in order to satisfy the conservation of energy, E = £ „ \un |

2,
when / = v = 0. The constraints still leave a free parameter e so that one
can set an = \, bn + l = — e, cn+2= — (1 — e).(7) As observed by Kadanof
one obtains the canonical value e = 1/2, if helicity conservation is also
demanded.(1) The set (1) of N coupled ordinary differential equations can
be numerically integrated by standard techniques.

To compute the maximal Lyapunov exponent in the GOY model, we
introduce the notation U = (Re(wi), In^M,),..., Re{uN), lm(uN)) and /",=
dUJdt and consider the linear variational equations



We have estimated the maximal Lyapunov exponent this way for the
GOY model with standard parameters N= 19, v=10~6, &0 = 2~4, / =
(1 + i) * 0.005. The value of the time increment was varied from St = 0.001
all the way up to St = 10, in time units set by the choice of parameters and
we find that the results are independent of this value, as expected. Figure 1
shows the obtained results, with a variation of e in the interval [0, 2]. Note
the transition to chaos at a critical value ec = 0.38704.(13) Biferale et al.(7)

found a slightly larger value, £ = 0.398, for the transition to the attractor at
the same parameter values; we do not know the origin of this discrepancy.
Magnifying around the transition point we observe a finite but small jump
of X from 0 up to 0.015. This makes the transition first order but we
speculate that this jump might disappear in the N -* oo limit. After that the
Lyapunov exponent grows more or less linearly with £ and reaches a maxi-
mum value X ~ 0.54 at s = 0.92. Then it drops sharply down to zero around
e = 1 after which it raises and drops again. The s = 1 is special because
at this point the last term in the GOY model, which couples to the two
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for the time evolution of an infinitesimal increment z = SU, where

is the Jacobian matrix of Eqs. (1). The solution for the tangent vector z can
thus be formally written as z(t2) = M(tl, t2) · z(tx), with M = exp JJ2 A(T) dx.
A generic tangent vector z(t) is projected by the evolution along the eigen-
vector e(1), belonging to the maximum Lyapunov exponent, i.e., z(t) =
|z(0)| e(1)exp(l1t) leading to

where z(0) is the initial tangent vector.
Practically, Eqs. (1), (2) are integrated simultaneously over a certain

time St, starting with a normalized tangent vector in a random direction, z(0).
The increment over time St in the length of the tangent vector is then Szx =
|z(c50l/|z(0)|. Next, the tangent vector is normalized z(St) = z(St)/\x(St)\
and this vector is used as a seed for a new integration over the time St, i.e.,
propagated forward to t = 2St. Generalizing this argument we obtain the
ith increment Szt= \z{iSt)\/\z((i — 1) St)\ and the maximal Lyapunov expo-
nent is given by (where we now set X = A,):
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Fig. 1. The variation of the maximal Lyapunov exponent as a function of r. for the GOY
model equations (1) with the parameters N = 19, v = 10 –6, k0 = 2 ~\ J' = (1 + /) * 0.005. Note
the transition to chaos at sc = 0.38704 and the finite, but small jump at this point. The Lyapunov
exponent increases nearly linearly but drops back almost to zero at t- = 1 as explained in the text.
The "bump" at E = 1.1 is due to the fact that the value of g has not converged.

previous shells, is zero. This means that for the last three shells, the equa-
tions reduce to:

It is seen that uN decays exponentially to zero, and therefore we may
neglect the right-hand-side of the second equation, which then leads to an
exponential decay of uN –1. Just the same argument can be applied to the
behavior of uN_2 up to w4 where the forcing is applied. We thus expect that
the solution essentially converges towards the trivial fixed point MM = 0 ( 1 4 )

and not to the "Kolmogorov fixed point." This is in accordance with our
numerical results, where we see a fast exponential convergence of the
modes toward un = 0. Figure 2 shows the variation of the amplitudes lung
as a function of time. Besides the nice exponential decay, it appears that
each mode is successively "triggered" for the decay. This is seen in Fig. 2:
the n th shell is triggered when the absolute value of the amplitude of the
n+ l th shell is a approximately 5 • 104 and the amplitude of the n + 2th
shell has practically vanished. This means that the equation for the nth
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Fig. 2. A logarithmic plot of the long-term dynamics of the absolute value of the shell
amplitudes |ua| for £= 1. The labeling refers to the shell number and one notes the drastic
decay the of the higher shell amplitudes.

shell becomes (d/dt) un= —ikn^l(u*_iu*+l) — vklun, and just when the
n+lth amplitude reaches ~ 5 · 1 0 4 the right-hand-side will be dominated
by the viscosity which then forces the nth amplitude towards zero.

Because the system is forced on the 4th shell, the amplitude of this
shell is prevented from going to zero. In fact, when the forcing is included
the "trivial fixed point" is M*= (0, 0, 0, f/vk2

4, 0, 0,...). Figure 3 shows the
variation of the real part of the maximal eigenvalue of the Jacobian as
function of e evaluated in this fixed point. We observe that the fixed point
is repelling for the standard parameter value e = 0.5 but becomes attractive
for e = 1.0. This is also the place where the dynamics becomes non-chaotic

Fig. 3. The value of the real parte of the maximal eigenvalue of the Jacobian evaluated in
the "trival fixed point" w*= (0,0, 0, f/vkl, 0,0,...), as a function of e. Note, that the fixed point
becomes stable around e = 1.



with boundary conditions B1 = BN= C, = C2 = AN_l = AN = 0. Conserva-
tion of the energy £ = £ „ vn(i)

2 tells us that, for v1 =f1 =0 , the differential
dE=2Y.n »«(») dvn(i) ^ 2 £ „ ««(/) • (»«(»+ 1) - »„(/)) = 0 leading to a similar
relations between the coefficients as for the GOY model: An= 1, Bn= –e,,
Cn= —(1 — £1).

(15) Surprisingly enough, iterations of this model is stabl
even for very few shells.

To simplify, we start out with a shell map with only N=5 shells and
the following parameters: v = 10~4, ko = 2~\ / = 0.00005. It is immediate
to study the eigenvalues of the Jacobian at the fixed point un(i+ 1) = un(i)
we locate the fixed point in the stable regime by iterating the map and
refining the solution with Newton's method. This fixed point is a
"Kolmogorov fixed point" with a scaling close to vn~k~l/3 apart oscilla-
tions.(7) By varying the parameter £1 in small steps and then using Newton's
method again one can obtain the fixed point where the map becomes
unstable. We calculate the eigenvalues of the Jacobian at the fixed point
and observe a Hopf-bifurcation (a pair of two complex conjugate eigen-
values escapes from the unit disc in the complex plane) at e1 = 0.705081885.
Here a limit cycle appears. From numerical iteration we observe that the
limit cycle has a period of 217.822 (iterations) at e, =0.70509. At this point,
the phase of the eigenvalues equals 0.0288458 which is in agreement with
the numerically found period since 2 · n/0.0288458 = 217.820. Figure 4a
shows the limit cycle for the parameter value el = 0.73 (note the somewhat
unusual "return plot" where the n +1 th shell amplitude is plotted against
the nth shell amplitude. This gives nicer graphs that a usual return plot).
As Ei is increased further a series of standard period doubling bifurcations
occur, Fig. 4b shows period four at £1 =0.764. Finally, the motion ends up
on a strange attractor as shown in Fig. 4c for c1, =0.77.
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as indicated by a convergence (although very slow) of the Lyapunov expo-
nent towards zero.

In order to understand the above results further we try to formulate
the simplest possible model with the same "symmetries" as the GOY
model, a shell map. This map is constructed from the same principles as the
GOY model with the difference that the time interval between each update
is a full time unit. We then obtain the following map in the real "velocity"
variable vn(i) of shell n at integer time i:
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Fig. 4. "Return plots" {vh{i),bK + l(i)) of the shall map Eq. (7) with the parameters N = 5,
v= 10~4, ko = 2~',f = 0.00005. In (a) e, =0.73 and we observe limit cycle generated by the
Hopf bifurcation; in (b) the second period doubling of the limit cycle is shown at £1 =0.764
and (c) is the strange attractor for £, =0.77.
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To estimate the maximal Lyapunov exponent for the shell map a
similar technique as for the GOY model is applied except that now we
are dealing with a discrete map. The tangent vector z(i) is propagated
ccording to

where Akj is the Jacobian of the map (7)

Again, practically we initiate by a unit tangent vector in a random direc-
tion z(0) and follow the expansion of the eigenvector. The only difference
to the GOY model is that the time increment now is unity so Eq. (5)
applies with 5t= 1.

Also at low values of £1 there is a transition and Fig. 5 show the varia-
tion of the maximal Lyapunov exponent as a function of e,. For £1 = 0 the
model starts out to be chaotic but then the Lyapunov exponent drops and
becomes negative around e1= 0.15. The exponent approaches zero at
£1 = 0.705. We identify this transition with the appearance of the limit
cycle: the distance between two initially close trajectories on the limit cycle
will not converge nor diverge. Then the transition to chaos described above
occurs at et =0.766. After that X grows sharply and drops back to zero at
£1 = 1. It is interesting that there seem to be windows where X goes to zero;
which are like the windows found in the logistic map (see for instance ref. 16).

Fig. 5. The maximal Lyapunov exponent versus e1 for the shell map in Eq. (7) for the
parameters N = 5, v=10^ 4 , ko = 2~\ f = 0.00005. Note the two transitions and that the
model becomes regular again for e1 = 1.
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Fig. 6. The maximal Lyapunov exponent versus e1 for the shell map in Eq. (7) for the
parameters JV=11, v = &0 = 2 ~ 4 , / = 5-10~6. Here, there is only one transition at £1~0.66.

At e1 = 1 we find again that the system converges towards the fixed point
close to zero {f/vk], 0,0,0,0) (and not the Kolmogorov fixed point). The
eigenvalues of the Jacobian are in this case just 1 — vkj (i = 1....5) and thus
the fixed point is stable.

It is possible to apply the shell map also for more shells and one can
go up to N = 11 without divergencies. Figure 6 shows the variation of the
maximal Lyapunov exponent as a function of £1. Here the transition occurs
at ef =0.657. For this number of shells one can identify an inertial range
and below the transition, the Structure functions follow the Kolmogorov
predictions, although with the standard oscillations. Above e, the motion
is intermittent and we again identify windows of stable evolution as for the
N =5 case.
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